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Role of side chains in phase equilibria of disklike mesogens

Maciej Wnek and Jozef K. Moscicki*
Institute of Physics, Jagiellonian University, 30-059 Krakow, Reymonta 4, Poland

~Received 5 December 1997!

A theory of phase equlibria in solutions of discotic mesogens of a hard-core disklike center and attached side
chains is developed in the Flory lattice approximation. The role of the side chain stiffness and length in the
phase equilibria is studied numerically in detail for two cases of the hard-core size,x57 and 10. It is found
that the chain stiffness has a profound effect on the molecular ordering, with stiff chains increasing and soft
chains decreasing the nematic order parameterS. The critical solute concentration for the first appearance of
the stable nematic phasevx* shifts towards lower values for stiff chains and to higher values for flexible ones.
In addition, the soft chains suppress while the rigid ones enhance the coexistence range of two nematic phases
observed forx.9.1 @M. Wnek and J. K. Moscicki, Phys. Rev. E53, 1666~1996!#. @S1063-651X~98!04909-5#

PACS number~s!: 61.30.Cz, 64.70.Md
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I. INTRODUCTION

In the field of approximating the spatial configuratio
and interactions of molecules in liquids one of the most co
monly used approaches is the hard-particle model. Thi
due to the thoroughly accepted assumption that the m
contribution to the intermolecular potential is the short-ran
repulsive forces~steric interactions! rather than the long-
range attractive forces. Other interactions, e.g., disper
forces, are usually introduced as a perturbation. One of
very efficient methods of studying configurational order
hard particles is the Flory lattice approach developed o
the years by Flory and his followers@1–7#. The theory suc-
ceeded especially in describing the isotropic to nem
phase transitions in liquids of highly asymmetric rigid a
semirigid molecules in thermotropic and lyotropic system
The great advantage of the method is the absence of
density expansions as in Onsager models@8,9#.

The formation of the nematic phase by disklike molecu
was envisioned and discovered by Chandrasekhar, Sad
iya, and Sureah over twenty years ago, and since then
cotic mesogens have attracted increased attention@10#. The
liquid crystallinity of disklike molecules is known to be the
motropic and lyotropic in nature, and the usual nema
phase and a large variety of columnar phases are formed
latter corresponding to the smectic order in systems of r
like molecules@11–13#. The anisotropy of the disklike me
sogen unit can vary considerably from relatively simple
large sheetlike rectangular structures@14–17#. At the fore-
front of current research are discotic metalomesogens
cause of their unique conductive and magnetic proper
@18,19#.

In a previous paper, we proposed a lattice method ba
theory of phase equlibria in a solution of disklike particl
@7#. Disorder in disk orientation is limited in a dense syste
by the requirement that an overlap of molecules be avoid
In order to quantify the implications of this requirement f
the steric part of the partition function we followed the cr
cial idea of Flory to represent a molecule at a given inclin
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tion to the director by a suitable number of perfectly order
subparticles~segments!; cf. Fig. 1. We considered a solutio
consisting ofns isodiametric spherical solvent molecules a
nx rigid disklike molecules of the same thickness andx times
as wide. The volume occupied by the solution is subdivid
into a cubic array ofn0 cells of linear dimension equal to th
diameter of the solvent particle~and the disk thickness!. We
assumed that each solvent molecule occupies fully a ce
the lattice. Similarly, each disk consisted of contiguous fu
occupied cells. No voids~empty cells! were allowed in the
system, thusn05ns1x2nx .

If the nematic director is along the latticeZ axis, then due
to the cylindrical symmetry of disklike molecules and th
axial symmetry of the nematic phase, the perfectly orde
disk is approximated on the lattice by a rectangular paral
epiped of breath-to-width ratiox located in an elementary
XY slice of the lattice; cf. Fig. 1 of@7#. Disorientation of a
disk is then described via two independent rotations abouX
and Y, producing segmentation of the parallelepiped into
stairway structure of segments located in neighboring

FIG. 1. Typical hard-core potentials for model disks and ro
and their lattice representations. The disorder of particles is
scribed by thef angle for rods and by a pair (fx ,fy) for disks; see
the text.
535 ©1999 The American Physical Society
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536 PRE 59MACIEJ WNEK AND JOZEF K. MOSCICKI
ementaryXY slices; cf. Fig. 1. The overall disorder of th
disk y is defined by the arithmetic mean of two disord
indices,yX andyY referring to both declinations

y5~yX1yY!/2. ~1!

In the spirit of the Flory method, we considered trains
contiguous segments in neighboring slices as indepen
from each other and their distribution in any givenXY slice
random, being uninfluenced by circumstances in neighbo
slices. Furthermore, due to the positional disorder of
nematic phase, the composition of each slice should be
same. Thus the model is independent of the shape of
system volume.

The combinatorics of putting particles into the lattice i
corporated their disklike nature and were quite easily so
able. The configurational part of the partition functionZcomb
for placingnx identical disks is

Zcomb5~nx! !21 )
j 1151

nx

n j 11 , ~2!

with n j 11 being the number of configurations available f
the j 11 disk, providedj disks are already positioned on th
lattice. We estimatedn j 11 for a disk characterized by it
yX ,yY indices and represented on the lattice byyX1yY21
trains of contiguous subparticles to be~cf. Figs. 4 and 5 of
@7#!

n j 115n0P1
~yX1yY21!P2

~yXyY2yX2yY11! , ~3!

where subparticles are divided into two categories depen
on the conditional probability of finding room for the give
subparticle in the elementaryXY slice; the probability of
finding the space for thefirst segment of each train
(yX1yY21 of them! is P1 and for everyother it is P2 . P1
andP2 are in turn expressed via the conditional probabilit
of finding vacant sites for all constituent cells of each c
egory of subparticles~cf. Fig. 5 of @7#!

P15p1ap1b
~x/yX1x/yY22!p1c

~x/yX21!~x/yY21! , ~4!

P25p2ap2b
~x/yX1x/yY22!p1c

~x/yX21!~x/yY21! . ~5!

Except for the first cell of each train (1a), probabilities
pi ( i 52a and 1c) are given by the mole fraction of vacan
sites in a random distribution of subparticles and empty s

pi.
n02 jx2

n02 j @x22Ki~x,ȳ!#
, ~6!

Ki(x,ȳ) being the average disk occupation factors, the e
mation of which are crucial for the theory@7#. With Zcomb
known, as well as the usual orientational and interact
parts of the partition function, the Gibbs free energyG and
thus equlibria conditions were established; cf.@7#.

Numerical calculations yielded the minimum value of t
disk anisotropy sufficient for the formation of the nema
phase,xmin53.015. The result is in very good agreeme
with the anisotropy measured for discotic micelles in aq
ous solutions @13,15,20–22#. We thoroughly discussed
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changes in the concentration-temperature phase diagram
sulting from the van Laar–type solute-solvent interactions
well as via disk anisotropy. The results showed a strik
similarity to the phase equlibria properties of solutions
rodlike molecules with the same molecular volume as dis
in excellent agreement with results of extensive Monte Ca
simulations and results from Onsager-type models@9,23#.
The phase diagrams for disks and rods of the same molec
volume were almost identical and displayed all relevant f
tures such as triple points, nematic-nematic coexistence
gions, and critical concentrations@7#.

However, there is one characteristic feature for all d
cotic thermotropic mesogens that is often ignored in the fi
approximation of theoretical modeling, i.e., the presence o
number of side chains laterally attached to the hard quas
cotic core. These side chains are usually of the alkyl ty
@24#. The influence of side chains on phase transitions
their length, conformation, and stiffness was observed
many experiments@25–30#. The most recent studies of larg
sheetlike complexes of palladium organyls in nonpolar s
vents showed that, depending on the chain length and
orientation with respect to the core, different phase diagra
and different degrees of orientational order can be obtai
@31,32#. What is even more striking is that two nemat
phases with different degrees of order were found in this t
of solution. The importance of the chain ‘‘stiffness’’ in th
formation of the nematic order and in phase equlibria is e
phasized by recent experimental results of Praefcke@33#,
which suggest that the chains preserve conformational st
ture to some extent and thus change the steric paramete
the system. This becomes especially important when
temperature is varied since conformational changes in
side chains influence their stiffness. The experimental d
are not yet sufficiently rich for drawing any quantitative co
clusions, but they definitely emphasize the importance of
chains in the formation of mesophases and phase equil
in solutions of discotic complexes.

We therefore found it important to extend our simp
theory to a more realistic system of disks with side chains
the lattice approach we are not constrained by mean fi
virial expansions and ‘‘excluded volume’’ approximation
that strongly depend on the molecular cylindrical symme
~cigars or disks! and, in the case of side chains, are impo
sible to calculate. The lattice method is the only one t
allows one to account for steric effects from side chains
the molecular configurational partition function, as well
for conformational changes in the chains. Other models, e
those of Onsager@34# or Gay and Berne@35#, are limited to
the platelike symmetry of the shape of the molecular pot
tial and thus incorporation of the chains is almost impossib

For rodlike molecules, the influence of molecular flexib
ity on the phase equlibria was considered in terms of
lattice method by Matheson and Flory@36# and for rods with
fully flexible side chains by Ballauff@37#. Their important
finding is that the presence of flexible side chains cause
decrease of the system order, i.e., fully flexible chains
more or less as a virtual solvent weakening the steric in
actions between the anisotropic cores.

It is well established experimentally that side chain a
phatic chains are undergoing continuous conformatio
changes and their structure and the mean shape persis
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depend on the symmetry of environement. The isotropic
vironment favors more randomized conformers, while
anisotropic one supports elongated structures@39–43#. To
simplify the problem, we study here two extreme cases
side chains attached in plane to the hard core, i.e.,stiff rod-
like and soft fully flexible ones. We assume for simplicit
that all side chains are identical and preserve their flexibil
stiffness in all coexisting phases. Considering the soft s
chains, we follow the approach of Matheson and Flory@36#
and Ballauff@37# for rods with soft side chains, whereas th
stiff chains are basically treated in a way similar to rodli
molecules@1,2#.

The details of the phase diagrams obtained do not di
dramatically from the ones for pure disks@7#. However, the
disordering effect of the flexible chains results in a shift
the nematic-isotropic (N-I ) coexistence range toward
higher concentrations and a decrease in the nematic o
parameterS. The changes are roughly proportional to t
chains volume fraction of the whole molecule. TheN-I co-
existence region, observed for bare disks ofx>9 ~cf. @7#!,
becomes smaller and for sufficiently long chains disappe

The opposite effects are observed for stiff chains. T
shift of the N-I range is towards lower concentrations a
the range extent is strongly enhanced. For stiff chains
also observe a proportionality between the changes in
phase diagram and the chain’s length. The changes inS are
not so uniform, but are similar to those obtained in@7# for
pure disks on increasing their anisotropyx. So we conclude
that the stiff chains effectively increase the order in t
model solution. Finally, we also give some general ideas
how to incorporate more complicated chain structures s
as chains attached at a certain angle to the hard cor
chains that are partially stiff and partially flexible.

II. THEORY

The theory presented here is a generalization of@7# to a
system of molecules~referred to hereafter as discotics
solute molecules! with disklike hard cores~bare disks! and
laterally attached identical side chains. In calculating
number of ways the solute molecules can be placed in
limited volume, the theory follows closely from our previou
work. What is significantly different is that side chains a
now attached at the parallelepiped corners that~i! require
additional empty cells on the lattice and~ii ! themselves caus
additional packing restrictions.

The partition function of an assembly of the moleculesZ
is usually factorized, i.e.,

Z5ZcombZorZint , ~7!

where the three factors are the combinatoric or steric fa
Zcomb, the orientational factorZor , and the factor introduc-
ing the exchange free energies of interaction between
moleculesZint . A perfectly ordered hard core of volumex2

is approximated as before by anx3x31 rectangular paral-
lelepiped with its long edges parallel to theX andY axes of
the lattice; cf.@7#. For simplicity and due to the natural sym
metry of the hard core, pairs of chains are attached at eac
the parallelepiped corners, where each chain’s first cell is
lateral extension of the respective side row of parallelepi
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cells ~cf. Fig. 2!, resulting inz58 chains@44#. However, for
generality of presentation we allow the number of chains
be a variable as long as possible. Each ofz side chains is
then approximated as a Flory classical linear chain~flexible
or stiff!, occupying a sequence ofm adjacent cells; thus the
discotic molecular volume now becomes equal tox21zm.

To retain most of the assumptions of@7#, we assume tha
the symmetry axis of the discotic molecule is predominan
defined by the hard core, thus by the orientational orde
the system we understand the order of the normal to the h
disklike core of the molecule. The declined core will be d
scribed respectively by two independent rotation anglesfx
andfy and the corresponding disorder indicesyX andyY ~cf.
above!. Consequently, the derivation of and the final res
for Zcomb retains a formal analogy to that of@7#, which we
will exploit in the following.

The model difference between the soft and stiff chain is
the orientational correlations between the subsequent la
sites occupied by the chain, i.e., for the soft chain no s
correlations are assumed, while for the stiff chain model
of the sites are orientationally correlated, i.e., a position o
subsequent site is unequivocally given by the preceding o
~cf. @1,45# and Fig. 3!. The chemical potentials for the iso
tropic phase are approximated by settingȳiso5 ȳX5 ȳY5x
~cf. @7#!.

A. Combinatoric or ‘‘steric’’ factor Zcomb

Providedj molecules are already positioned on the lattic
the number of configurations available for thej 11 molecule
n j 11 characterized by the hard-core disorder indicesyX and
yY becomes now@cf. Eq. ~3! and @7##

FIG. 2. Lattice representation of model discotics: an example
~a! a discotic particle with soft chains in the perfectly ordered~hard-
core! nematic state, and a discotic particle with stiff chains in t
state of~b! perfect order and~c! slight disorder.
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n j 115n0P1
8~yX1yY21!P2

8~yXyY2yX2yY11!Pc8 , ~8!

whereyXyY is the number of the disk subparticles,yX1yY
21 is the number of trains of subparticles the inclined d
is divided into,Pi8 are the probabilities of finding free spac
for the ‘‘first’’ ( i 51) and any ‘‘other’’ (i 52) segment of
each train, andPc is the probability of finding free space fo
the side chains.~The prime is introduced here to emphasi
the presence of side chains.!

P18 andP28 are given by Eq.~5! with p replaced formally
by p8 to emphasize the presence of side chains. The p
ability that a given site is free for the 1a cell of the first
segment is given by

p1a8 5
n02 j ~x21zm!

n0
, ~9!

wheren0 is the total number of sites in the system~the sys-
tem volume!. For every otheri cell pi8 is given by@cf. Eq.
~12! of @7##

pi8.
~n02 jx2!

n02 j @~x21zm!2Ki~x,ȳ;z,m!#
, ~10!

Ki(x,ȳ;z,m) being the average occupation factors that defi
the probabilities of finding free sites for different cells of th
hard core in the presence of the chains~cf. @7# and the Ap-
pendix!.

Benefiting from previous applications of the lattic
method to flexible and stiff chains@36,37,46#, the Pc8 factor
in Eq. ~8!, which describes the probability of additional
accommodating on the latticez side chains, each of lengt
m, attached to the hard core, can, to a good approximat
be written as@47#

Pc85p1a8
zmap2b8

zm~12a! with 0<a<1, ~11!

where we have made use of the probabilities already defi
from finding an empty site for the first cell of each sequen
of collinear cells into which the chains are brokenp1a8 and of
finding a free site for each of the remaining cells in t
sequencep2b8 @cf. Eqs.~9! and ~10!#, respectively;a is thus

FIG. 3. Lattice representation of~a! soft and~b! stiff side chains.
Broken lines indicate the position of the hard core.
k
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the fraction of first cells in the side chains. Note that suc
definition of Pc8 encompasses all encounterable kinds of s
chains: from fully flexible or perfectly rigid chains to th
case of chains attached to the hard core at any arbit
angle. Such a choice also ensures model consistency in
isotropic phase and with models for rods. For example,
order to describe chains of partially relaxed stiffness
should be enough to redefine thea factor in powers in Eq.
~11! in such a way that some 1a cells are present even in th
state of perfect order~cf. above!. In a similar way one can
also model a solution of discotics with stiff chains, which a
attached at some angle with respect to the hard-core pl
Let us consider, for example, an intuitively simple case
bowlike discotic mesogens@48,49#, i.e., with the side chains
bent in the same direction from the hard-core plane~cf. Fig.
4!. One might intuitively expect that on average a number
1a cells in chains should remain constant for small declin
tions of the particles from the state of perfect order. T
follows from the fact that while on tilting a particle awa
from the perfect order the number of 1a cells in chains on
one side of the core increases, it is simultaneously comp
sated for by the equal decrease of the number of 1a cells on
the opposite side of the core@cf. Fig. 4~b!#. Such a compen-
sation effect should be effective for declinations up to tho
comparable with the chain attachment angle. Since it
been observed experimentally in thermotropic discotic s
tems with side chains attached at an angle of about 30°
the orientational order of the discotic hard core in the ne
atic phase is high, e.g.,S.0.7 at the clearing temperatur
@50#, we expect that Eq.~11! should work for the nematic
phase of bowl-like discotics quite well. In such a casea

should therefore be essentially independent ofȳ and a weak
function of the core-chain bond angle. However, for simpl
ity and clarity of presentation we restrict our detailed cons
erations to two limiting cases of the side chains attached
the plane of the hard core only, as discussed below.

1. Flexible chains

For soft side chains we assume, as usual, that every
figuration of a chain is equally probable@36,37,45#. In terms
of the lattice model the sites occupied by a given chain
main uncorrelated, i.e., every subsequent cell of the ch

FIG. 4. Side view of a discotic particle, with side chains a
tached at some anglef to the core plane to form a bowl-like struc
ture in the state of~a! perfect order and~b! with some orientational
disorder described byF. Black and white squares symbolize 1a
and 1b cells, respectively.
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can occupy a lattice site with a probability uninfluenced
the position of the preceding cell in the chain. To a go
approximation we can then take the probability that a giv
site on the lattice is free for a given cell of a chain to be
same as for 1a cells of the core disk and Eq.~11! reduces to

P85p1a8
zm. ~12!

Consequently, the average occupation fact

Ki(x,ȳ;z,m) for discotics with soft chains are

Ki
f~x,ȳ;z,m!5Ki~x,ȳ!1zm, ~13!

where Ki(x,ȳ) are the ‘‘old’’ factors for a system of bar
hard disks developed in@7# and the superscriptf stands for
‘‘flexible.’’ The particular form of the additional termzm is
a consequence of the lack of any correlations between
chains cells, i.e., every lattice site can be occupied by ev
cell of the soft side chain~virtual solvent!. The chain cells
can randomly stick out of theXY slice of the segment the
are attached to, so given the statistical identity of allXY
slices, they can in general block any possible site within a
given slice.

With the aid of Eqs.~2! and ~8!–~13!, the combinatoric
part of the partition function becomes

Zcomb5
1

nx!
)
j 51

nx

$n0
~12yX

j
2yY

j
2zm!

@n02 j ~x21zm!#~x21zm!

3F
1b

2~x/yX
j

1x/yY
j

22!~yX
j

1yY
j

21!
F

1c

2~yX
j

2x!~yY
j

2x!

3F
2b

2~x/yX
j

1x/yY
j

22!~yX
j

21!~yY
j

21!
F

2a

2~yX
j

21!~yY
j

21!
%,

~14!

where

Fi5n01 jM i , ~15!

Mi52~x21zm!1Ki
f~x,ȳ;z,m!,

providedz58 andyX
j andyY

j are the disorder indices of th
j molecule. Equation~15! closely resembles the expressio
for Zcomb in @7#, the only differences being the presence
the zm ‘‘corrective’’ factor. Thus the procedures of@7# can
be applied in order to renderZcomb into a more tractable
form and the steric partition function for discotic molecul
with soft side chains becomes
d
n
e

s

he
ry

y

f

2 lnZcomb52nx~ ȳ211zm/2!1nsln~vs!1nxln
vx

x21zm

1n0~ ȳ21!2Q2a

ln Q2a

M2a

1n0~ ȳ2x!2Q1c

ln Q1c

M1c

1n0~2x/ ȳ21!F ~ ȳ21!2Q2b

ln Q2b

M2b

1~2ȳ21!Q1b

ln Q1b

M1b
G , ~16!

whereQi511(nx /n0)Mi providedz58 andMi is defined
in Eq. ~15!, andvs5ns /n0 andvx5nx(x

21zm)/n0 are the
volume concentrations of the solvent and solute, resp
tively.

2. Rigid, rodlike chains

We assume that each rigid chain is coplanar with the c
and forms a rodlike extension of the relevant hard-core s
row of cells@cf. Fig. 2~b!#. The particular position of the side
chain in the molecule is of no importance for the final res
due to the phase symmetry~cf. @7#!.

Clearly, the ordering of stiff-chain discotics at high co
centrations will be more difficult than in the case of ba
disks. From simple geometric considerations of the solut
in the close packing limit it becomes obvious that the sol
concentration in the limitvVdW rapidly decreases withm as

vVdW5@x21~z22!m#@~x212m!~x21m!#21, ~17!

i.e., from vVdW51 for bare hard cores to about 0.8 form
51 or 0.65 form52, for illustrative values ofx used in the
calculations below. The concentration can increase only
the expense of orientational order of the system. Either
system will tend to a situation in which particles are pe
fectly orientationally and translationally inplane ordered b
then, due to side chains, their centers of mass are sepa
substantially, at least byx1m, and the system density i
low, or the system tends to the higher-density situation
which hard cores are as close as possible, but this wo
require some orientational disorder in the system to reli
steric constraints of the side chains preventing centers
mass from approaching each other more closely. These k
of steric constraints are accommodated by our model. O
the discotic particle is tilted away from perfect order, t
core disks and side chains become segmented on the la
Since the number and persistence of segments~their size!
depend on the degree of disorder, denser packing beco
increasingly possible initially as the Flory disorder indic
increase.

In order to evaluate the combinatoric part of the partiti
function we begin with the limiting case of perfectly ordere
discotic molecules. Since in this case the side chains are
ideal extensions of the core side row cells, the side ch
cells are statistically identical to the latter and~cf. Fig. 5 and
the Appendix!



-

th
.
c

iz
w
a-
de
e

e

n

-

he
ttice.
ew

and

ins
-

ll is

e-
sta-

and

-
er,
as a

s
rd

540 PRE 59MACIEJ WNEK AND JOZEF K. MOSCICKI
P85p2b8
zm. ~18!

This leads to average occupation factors given by~cf. the
Appendix!

K1a
or ~x,ȳ;z,m!5K1a

f ~x,ȳ;z,m!,

K1b
or ~x,ȳ;z,m!5K1b~x,ȳ!13.25m20.25x/ ȳ10.25,

K1c
or~x,ȳ;z,m!5K1c~x,ȳ!12, ~19!

K2a
or ~x,ȳ;z,m!5K2a~x,ȳ!14m22x/ ȳ,

K2b
or ~x,ȳ;z,m!5K2b~x,ȳ!12.5m20.5x/ ȳ10.25,

where the superscriptor is introduced to distinguish this par
ticular case. In developing Eq.~19! we explicitly setz58 to
benefit from the system and molecule symmetry, i.e.,
interchangeability of theX andY axes. The formulas in Eq
~19! form a good quantitative approximation of the exa
occupation factors as long as 0!m<x; for very short side
chains and for the chain length exceeding the hard-core s
the approximation is less adequate and should be used
care for qualitative extrapolation only. Fortunately, illustr
tive calculations show below that the orientational disor
of the nematic phase coexisting with the isotropic phas
usually relatively substantial, so the use of Eq.~19! outside
the limit 0!m<x is minimized and of minor consequenc
for the conclusions drawn here.

The resulting combinatoric part of the partition functio
for the system in the state of perfect order is

Zcomb5
1

nx!
)
j 51

nx

$n0
~12yX

j
2yY

j
!
@n02 j ~x21zm!#~x21zm!

3F
1b

2~x/yX
j

1x/yY
j

22!~yX
j

1yY
j

21!
F

1c

2~yX
j

2x!~yY
j

2x!

3F
2b

2~x/yX
j

1x/yY
j

22!~yX
j

21!~yY
j

21!2zm
F

2a

2~yX
j

21!~yY
j

21!
%,

~20!

FIG. 5. Implemented segregation of~a! ‘‘first’’ m51 and ~b!
‘‘other’’ m52 segment cells into statistically different kind
ma, mb, mb8, andmc. Cells of the side chain adjacent to the ha
core are emphasized by thick lines and can be of 1b, 1b8, or 1a
type; cf. the text.
e

t

e,
ith

r
is

where Fi5n01 jM i , and Mi52(x21zm)1Ki
or(x,ȳ;z,m)

providedz58, or, applying again the usual simplifying pro
cedure,

2 lnZcomb52nx~ ȳ21!1nsln~vs!1nxln
vx

x21zm

1n0~ ȳ21!2Q2a

ln Q2a

M2a

1n0~ ȳ2x!2Q1c

ln Q1c

M1c

1n0~2x/ ȳ21!F ~ ȳ21!2Q2b

ln Q2b

M2b

1~2ȳ21!Q1b

ln Q1b

M1b
G1zmQ2b

ln Q2b

M2b
,

~21!

with theQ,s andM ,s defined byKor,s via Eqs.~16! and~20!,
respectively.

Now let us introduce some disorder to the system. T
core disks and side chains become segmented on the la
Each break in the rigid chain results in generating a n
segment beginning with a 1a-type cell@1# ~cf. Figs. 2 and 3!.
The higher the molecule declination, the more segments
1a cells will be generated amongzmchain cells. As a con-
sequence of the chain stiffness and collinearity of cha
with core edges, the fraction of 1a cells generated by disor
der is proportional to the core disorder indexy and is given
by a5(y21)/(x21). Thus, Eq.~11! becomes

Pc85p1a8
zm~y21!/~x21!p2b8

zm~x2y!/~x21! . ~22!

For the state of perfect ordery51, Eq. ~22! reduces to Eq.
~18!. In the state of complete disorder (y5x, the isotropic
phase! the number of segments is maximum, i.e., each ce
of the 1a type and Eq.~22! becomes identical to Eq.~12! of
the soft chains. Although the latter result might seem som
what artificial, it is a direct consequence of the assumed
tistical independence betweenXY slices. A similar problem
for highly disordered rods has been discussed by Flory
other authors@2,37#.

Since besides the 1a-type cells the rest of the chain seg
ment cells remain statistically in the state of perfect ord
we assume that each occupation factor can be written
weighted average of the appropriateKi

f ,s andKi
or,s

Ki
r~x,ȳ;8,m!5F12

ȳ21

x21
GKi

or~x,ȳ;8,m!

1F ȳ21

x21
GKi

f~x,ȳ;z,m!. ~23!

or, with the use of Eqs.~13! and ~19!, explicitly
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K1b
r ~x,ȳ;z,m!5K1b~x,ȳ!1@~x2 ȳ!~3.25m10.25x/ ȳ

10.25!1~ ȳ21!zm#/~x21!,

K2b
r ~x,ȳ;z,m!5K2b~x,ȳ!1@~x2 ȳ!~2.5m20.5x/ ȳ10.25!

1~ ȳ21!zm#/~x21!,
~24!

K1c
r ~x,ȳ;z,m!5K1c~x,ȳ!1@~x2 ȳ!21~ ȳ21!zm#/~x21!,

K2a
r ~x,ȳ;z,m!5K2a~x,ȳ!1@~x2 ȳ!~4m22x/ ȳ!

1~ ȳ21!zm#/~x21!,

where the superscriptr distinguishes the case. Since Eq
~16! and ~21! differ only in two terms, averaging over th
two sets of cells is straightforward and the steric partit
function for z58 becomes

2 lnZcomb52nx~ ȳ21!1nslnvs1nxln
vx

x21zm

1n0~ ȳ21!2Q2a

ln Q2a

M2a
1n0~ ȳ2x!2Q1c

ln Q1c

M1c

1n0

2x2 ȳ

ȳ
F ~ ȳ21!2Q2b

ln Q2b

M2b

1~2ȳ21!Q1b

ln Q1b

M1b
G1F x2 ȳ

x21
Q2b

ln Q2b

M2b

1nx

ȳ21

x21
Gzm, ~25!

with Q,s andM ,s defined as usual byKr ,s @cf. Eqs.~16! and
~20!, respectively#.

Equation ~25! reduces to Eq.~21! in the perfect order
limit, i.e., for ȳ51. For ȳ5x it becomes identical to Eq
~16!, i.e., with the case of discotic molecules with flexib
chains in the total disorder state. This result is inherent to
Flory lattice method@36,37#. Due to theXY ‘‘slicing’’ of the
model dicotics, the soft and the strongly disordered s
chains should be indistinguishable. However, we expect
order of the nematic phase to be relatively high, so this sm
inconsistency of the Flory approach should not affect
results dramatically.

B. Solute-solvent interactionsZint

We examine also weak interactions between side ch
and other parts of the system. For the purpose we ass
that the intermolecular forces are sufficiently weak not
disturb seriously the assumed randomness for specified
gree of orientation, i.e., these interactions are spatially u
form. In assuming so, we neglect the effect of the compon
stiffness, in particular of the side chains~c!, on soft interac-
tions in the system. The same kind of interactions have
ready been considered between hard disks~d! and solvent~s!
in @7# and in the Flory treatment of model solutions of ro
like particles with@37# and without side chains@36#.
.
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The energy of short-range attractive interactions betw
the system components is usually written in the form of
van Laar heat of mixing@1,7,37#

DE

RT
5xsdnsvd1xscnsvc1xdcncvd , ~26!

whereR andT are the gas constant and temperature, resp
tively, and vc and vd are the volume concentrations of th
side chains and the hard cores, respectively,

vc5
nxzm

n0
5vx

zm/x2

11zm/x2
, vd5

nxx
2

n0
5vx

1

11zm/x2
.

~27!

RTx i j can be identified with the energy change per cell
transferring a solute molecule from the pure solute to
infinitely diluted solution.

In the case when the hard core and side chain interact
with the solvent are very similar, Eq.~26! reduces to

DE

RT
5xn0~12vx!vx1xdcn0

zm/x2

~11zm/x2!2
vx

2 , ~28!

with @37#

x5xsc

zm/x2

11zm/x2
1xsd

1

11zm/x2
. ~29!

The contribution from interactions between side chains a
hard coresxdc is, in general, nonzero. For example, it
commonly thought that the side chains in rodlike and di
like mesogens act, more of less, as a virtual solvent. O
may then assumexdc to be comparable toxsd if a need
arises. Note, however, that since the weighting fac
(mz/x2)(11zm/x2)22 in the last term of Eq.~28! is rather
small ~e.g., we found it to be less than 0.25 for a number
physically relevant numerical examples studied here!, the
contribution may become significant only at very high co
centrations, i.e., close to the neat system, which is bey
the scope of the present paper. These interactions will t
be discarded in what follows and the form ofZint is the same
as in @7#, with x given now by Eq.~29!:

Zint5exp~2DE/RT!5exp~2Qvxvs!. ~30!

Q5xn0 may be generally thought of as a free energy
interaction@1,36,51#. On the other hand, for the convenien
of results presentation ofQ is alternatively frequently inter-
preted as the reciprocal of the normalized~dimensionless!
temperature@3,5,46,52#. Combining Eqs.~30! and ~7!, we
get finally an expression for the Gibbs potential@cf. Eq.
~33!#.

C. Orientational factor Zor

Since in our model the orientation of the discotic mo
ecule remains defined by disorder indicesyX ,yY of the hard
core,Zor has the same form as Eq.~30! in @7#,

2 ln Zor.22nxln~ ȳ21!. ~31!
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As before,Zor is related toȳ by the simplifying assumption
that the orientational distribution function of the disk sym
metry axis f (c) is uniform over a solid angle out to som
angle between the disk axis and director and zero bey
@45,7#. The presence of the side chains enters via equilibr
values ofȳ, which are strongly dependent onZcomb.

D. Phase equilibria conditions

Phase equilibrium between two phasesA andB requires
equality of chemical potentials in both phases for all com
nents:

~m i2m i
0!A5~m i2m i

0!B, ~32!

wherei 5s or x denotes solvent or solute molecules, resp
tively. By definition, the chemical potentials are

m i
f2m i

0

RT
5S ]Gf

]ni
D

T,Vueq

52S ] ln Zf

]ni
D

T,Vueq

, ~33!

wheref[A or B, andT andV denote the absolute temper
ture and sample volume, respectively. The subscripteq sig-
nifies the orientational equilibrium of solute molecules if
phase is orientationally ordered~nematic!, i.e.,

] ln Zf

] ȳ
50,

]2ln Zf

] ȳ2
.0. ~34!

III. ILLUSTRATIVE CALCULATIONS

Results for bare disks in solution will serve as a referen
The N-I coexistence range on the dimensionle
concentration-inverse temperature (vx ,Q) phase diagrams
obtained in@7# has, generally speaking, a bottlelike shap
i.e., at high temperatures it is narrow in concentrat
~‘‘bottleneck’’! and then, at sufficiently low temperature
widens significantly and rapidly. For small disk axial rati
3.015,x<9.1 only the coexistence of the isotropic and ne
atic phases is found. However, forx>9.1 an additional re-
entrant nematic behavior just below the bottleneck shows
i.e., in some particular range of temperatures and concen
tions either of the two pairs of nematic-isotropic or nemat
nematic (N-N8) phases coexist~cf. Figs. 10 and 11 in@7#.

Numerical solutions of Eqs.~32! and ~34! are therefore
performed for two illustrative hard-core sizes representa
of these two different phase behavior regimes of bare di
i.e., for x57 and 10, respectively~cf. Fig. 6!. Since the
number of side chainsz58 is fixed in the model, the phas
diagram is studied as a function of stiffness and a suc
sively increasing length of side chains. Calculations yi
also the equilibrium Flory disorder index of the coexisti
nematic phaseȳ. For the reader’s convenience, the conve
tion of @7# is also adopted in the figures below andȳ values
are converted to the nematic order parameterS.

IV. RESULTS AND DISCUSSION

First, we investigate steric effects arising solely fro
presence of side chains, i.e., the athermal limitQ50 ~i.e.,
T5`). Results of calculations in the limit are summariz
nd
m

-

-

e.
s

,
n

-

p,
ra-
-

e
s,

s-
d

-

in Fig. 7. The critical concentration for the formation of th
I -N biphasevx* varies nearly linearly with the chain length
increasing for the soft chains and decreasing for the s
ones. The rate of this change increases with decreasing h
core size@cf. Fig. 7~a!#. The shift invx* is accompanied by a
change in the order parameter of the coexisting nem
phase@see Fig. 7~b!#. TheS dependence on the chain leng
is more pronounced for the larger hard core. A monoto
reduction of the nematic order by the soft chains seem
saturate on increasing the chain length. The addition of
shortest rigid chains to hard-core disks leads to a decreas

FIG. 6. ~a! phase diagram (vx ,Q) and ~b! S vs Q for two
reference solutions of bare hard-core discotics ofx57 and 10, re-
spectively.

FIG. 7. Critical values of~a! vx and ~b! S for the formation of
the nematic phase in the athermal limit as a function of the ch
normalized volumezm/x2. Straight lines in~a! are linear fits.
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the order, but on their elongationS bottoms out and begins t
increase@cf. Fig. 7~b!#. The former is analogous to the de
crease in the order parameter observed on increasingx in the
bare disks system~cf. @7#.

Some comment is necessary when comparing the re
in Fig. 7 for very short chains, i.e.,m51. The lattice theory
does not differentiate substantially between such short ch
and the sole but subtle difference is how and where they
attached to the hard core~cf. Sec. II A!. This leads to similar
values ofS, but substantially differentvx* .

Results in Fig. 7 clearly indicate that the chain’s prese
influences the minimum~or critical! size of the hard corexcr
necessary for the formation of the nematic phase. Calcul
minimum values ofx for different chains are given in Tabl
I. The inclusion of the soft chains necessitates an increas
the hard-core size and this effect seems to saturate axcr
.6 on increasingm. Having in mind the limitations of the
results in Eq.~19!, we note, however, that phase diagram
for the rigid chains indicate the opposite effect. The critic
hard-core size rapidly decreases below the model limitxcr
52 on increasingm, roughly asm1x.const, i.e., form
52 calculations give alreadyxcr,2. x.1 corresponds to
yet another interesting starlike or crosslike structure of
particle. Some idea about the properties of such a system
be gained by assumingx.2. As an example,vx* vs m for
x52.05 andm>2 are also given in Table I. The variation
dramatic. A proper study of solutions of such starlike p
ticles requires, however, an appropriate and substa
modification of the theory, e.g., elimination of the hard co
altogether and reduction ofz to 4, which is beyond the scop
of this paper. In addition, typical results of the phase eq
libria calculations for different chains are compared w
those for bare disks in Figs. 8–11.

For soft chains~cf. Figs. 8 and 9!, independent of the
hard-core size, the increasing chain length shifts the ph
diagrams to higher concentrations, at the same time narr
ing and extending towards lower temperatures the bottlen
section of the diagrams. The order of the nematic pha
coexisting with the isotropic phase within the bottleneck s
tion of the phase diagram, becomes substantially suppre
and its temperature dependence weaker on increasing
chain length. However, once the biphasic range broade
is reached,S begins to rapidly rise towards unity asQ in-
creases further and the effect quickly saturates on increa
m ~cf. Figs. 8 and 9!.

Since in the case of soft chains the Gibbs free ene

TABLE I. Critical values of parameters for the formation of th
nematic phase in the athermal limit for different chain lengths.

Soft chains Stiff chains
m xcr xcr vx* at x52.05

0 3.015 3.015
1 4.00 2.13
2 4.42 ,1 0.604
3 4.72 ,1 0.429
4 4.97 ,1 0.333
5 5.18 ,1 0.271
10 5.94
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depends only on the product of the chain number and len
zm58m @cf. Eq. ~16!#, it is a function of neither where no
how the chains are attached to the hard core@cf. Fig. 2~a!#.
The flexible chains thus play the role of an additional ‘‘‘vi
tual’’ solvent that, being isotropic, additionally separates
interacting disks cores. To demonstrate this, the phase
gram is replotted in the (vd ,Q) coordinate system, i.e., th
hard-core concentrationvd is used rather than the solven

FIG. 8. Soft chain discotics: two alternative representations
the phase diagram for different hard cores (a, a8) x57 and (b,
b8) x510 and different length of the side chainm. vx andvd are,
respectively, the concentrations of discotic particles and their h
cores only.

FIG. 9. Soft chain discotics:S vs Q for the hard core of~a! x
57 and~b! x510 and different length of the side chainm.
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concentration@cf. Eq. ~27! and Figs. 8(a8) and 8(b8)]. The
shift of the bottleneck towards the higher concentrations
increasingm notably disappears, but the narrowing and t
offset temperature of the bottleneck range dependence om
is still pronounced. The latter can in turn be explained by

FIG. 10. Stiff chain discotics: (vx ,Q) phase diagram for the
hard core of~a! x57 and~b! x510 and different length of the sid
chainm.

FIG. 11. Stiff chain discotics:S vs Q for the hard core of~a!
x57 and~b! x510 and different length of the side chainm.
n
e

e

absence in calculations of chain–hard-core interactions,
xdc50 in Eq. ~30!. Trial calculations not shown here fo
several values ofxdc indicate that inclusion of these interac
tions in the model indeed produces modifications of
phase diagram in the expected direction. Some of the sim
disordering effects of the soft chains on a model solution
rodlike molecules were observed and discussed by Ball
@37#.

This virtual solvent effect has a consequence for the
entrant behavior observed in the system. On the one h
calculations forx510 show that the introduction ofm51
chains is already sufficient for the suppression of the nem
reentrant feature present for bare disks withx>9.1 @cf. Figs.
8~b! and 9~b!#. In accord with numerical results in the athe
mal limit ~cf. Table I, trial phase diagram calculations n
presented here clearly indicate that the nematic reent
phenomenon can be preserved on increasing the side c
length if the hard-core anisotropy is enlarged adequately.
the other hand, onm approachingx the phase diagram
changes qualitatively in that now we have triple and critic
points on the low-concentration side of the diagram, cor
sponding to additional coexistence region between two
tropic phases@cf. Fig. 8~b! for m55]. Such a phenomenon i
not unusual for discotics@53,54# and has been seen alread
in model lattice calculations for a solution of main-cha
polymer liquid crystals@55# and mixtures of cigarlike nem
atogens with flexible chains@56,57#. Relative interactions be
come, on increasingm, strong enough to cause liquid~hard-
core! -liquid ~solvent! demixing in the isotropic phase@58–
60#.

Although soft chains act as a virtual solvent,rigid chains
increase the discoticity of the particles, i.e., the effects of
rigid chains closely resemble those arising from increas
the axial ratio of bare disks~cf. @7#!. Typical results for stiff
chains are shown in Figs. 10 and 11. On increasing the c
length theI -N biphasic range becomes narrower and p
gressively shifted towards lower concentrations while
bottleneck section extends to lower temperatures. The for
effect is opposite to what is observed for soft chains a
reflects the enhanced discoticity of particles by the prese
of stiff chains, The latter effect is analogous to that of s
chains and results from the solvent-solute interaction mo
adopted in the calculations, the same for both kinds
chains.

Increased discoticity results also in stabilizing the ree
trant nematic behavior@cf. Fig. 10~b!#. The concentration
range of theN-N8 coexistence slightly decreases while t
temperature range increases pronouncedly on increasinm.
The enhanced discoticity is also manifested in theQ vs S
behavior. In addition to the effects associated with the ini
introduction of side chains, i.e., form51, the presence o
stiff chains leads to an increased order of the nematic ph
While the order parameter of the highly ordered nema
phaseN8 is already close to unity and thus is essentia
insensitive to the presence of stiff chains,S of the less or-
dered nematic phase shows an isothermal increase as a
tion of m @cf. Fig. 11~b!#.

Both principal side chain effects observed in this stud
i.e., the virtual solvent effect of the soft chains and the e
hanced discoticity by the stiff chains, are clearly presen
thermotropic systems. Side chains in these systems are
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essary for both stabilizing the liquid crystallinity and provi
ing the virtual solvent. It is very well documented in th
literature that portions of aliphatic chains close to the rodl
or disklike core are rather stiff, with increasing flexibilit
along the chain@39,40#. This leads to a substantially large
effective hard-core part of the molecule~stabilizing effect!,
with the remaining flexible part of the side chain playing t
role of a solvent preventing crystallization of the system.

Recent experiments with large sheetlike molecules s
as palladium organyls andb-diketinate compounds confirm
the importance of the side chains in their phase beha
@32#. These molecules have a flat, rigid, and more or l
rectangular core and possess a large number of chains
tached to four corners in a very similar way to our mod
molecules. They have lyotropic properties in mixtures w
apolar organic solvents. Some of the compounds also h
two nematic phases in addition to the columnar one and
existence of these phases is strictly connected with the
chain’s length and solvent type. The two phases differ w
respect to the order parameter. The highly ordered nem
phase appears at lower temperatures and the nematic-ne
coexistence region is also observed. These properties ca
be addressed at the moment within the framework of
present theory. One should consider not only solute-solv
isotropic interactions, chain length, and stiffness, but a
anisotropic interactions between the solute molecules.
rods these kind of interactions have been considered by F
and Ronca and followers some time ago@3,5,6,61#. Our
theory on the same problem in solutions of disks is w
advanced@62# and on its completion we plan to return
these problems in the future.

Finally, some comment is needed on the characteri
bottleneck shape of the coexistence range on the phase
grams. This particular shape is charactristic of many liotro
rigid mesogens with a sufficiently high shape anisotropy
molecules@63–66#. It appears to be a universal feature
such systems and is also obtainable theoretically indepen
of the mesogen molecular shape~disks or rods! @7,46#, poly-
dispersity@5,52,67#, partial flexibility @36#, the character of
the intermolecular forces~orientation dependent or isotropic!
@1,5,7,61,63#, and the absence or presence of side chains
their stiffness@37,38# and is uninfluenced by external field
@51,68#.

Note additionally that the shape of the phase diagram
asymmetric. The low-concentration boundary of the coex
ence rangevx* (Q) is more or less linear inQ. It is defined
by the first appearance of the anisotropic phase in the sys
on increasing the solute volume fraction from the infin
dilution limit. The density of the isotropic phase satura
and the just formed anisotropic phase~nematic! has the low-
est possible density at this point. A further increase of
solute concentration does not produce any variation of
densities~for monodisperse mesogens! until the whole sys-
tem becomes nematic at the upper concentration limit of
coexistence range. Since the last bit of the isotropic ph
disappears at this point, the upper concentration bound
line vx** (Q) can be identified with the temperature depe
dence of the minimum~critical! density of the anisotropic
phase. The latter is a function of steric and attractive in
molecular forces and varies quite dramatically on going fr
the regime of dominance of steric over attractive interacti
e
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to the opposite regime when the latter prevail. As a resul
these dramatic changes, the phase diagram bulges on
high-concentration side. The same density changes of
nematic phase are of course also present at the l
concentration boundary. However, since the volume fract
of the anisotropic phase is then infinitely small, they show
as a slight but visible suppression of the critical volume co
centrationvx* ~cf. Ref. @7# and Figs. 6, 8, and 10!.

The universality of this behavior can be easily understo
if one recalls the Boltzmann exponential of intermolecu
energy@cf. Eq. ~30!# and thinks ofQ rather as a free energ
of interaction rather than the inverse of normalized tempe
ture. In the absence of attractive interactions the density
the stable nematic solution is relatively low and require
sufficiently large shape anisotropy of the mesogenic p
ticles, i.e., sufficient elongation of rodlike systems@1# or
flatness of disklike systems@7#. Various Flory method calcu-
lations show that if the anisotropy is below the critical valu
even the maximum density of the system (vx51) is insuffi-
cient for the formation of the nematic phase in the absenc
attractive forces. However, the nematic phase usually
pears in such a system if attractive forces are allowed to p
their role, e.g., by lowering the temperature~cf. Fig. 4 of
Ref. @5# and Ref.@3#!, which is characteristic of thermotropi
liquid crystallinity @69,70#.

For sufficient shape anisotropy, the nematic phase
formed even in the absence of attractive forces. The onse
the biphasic range occurs at ever higher solute concentra
as the shape anisotropy decreases. The transition of
whole system to a neat anisotropic state requires then a
tively small further increase of the solute concentration, i
the biphasic range is narrow~cf. Fig. 6!. A dramatic broad-
ening of the phase diagram signals that attractive forces
becoming important. The attractive forces bring mesog
molecules much closer to each other, thus augmenting
stantially the minimum density of the stable anisotrop
phase. The nematic phase is formed more easily, so the
signs of the nematic phase occur at lower concentration
requires, however, far more mesogenic solute molecule
sustain the continuous increase of volume fraction of
anisotropic phase in the system. Consequently, the biph
range extends to much higher concentrations. The shap
the phase diagram for large values ofQ becomes similar to a
typical demixing phase diagram of a binary system~cf., e.g.,
Refs.@56–58#!.

Since the densities of typical mesogen compounds
very similar, one may expect that attractive forces betwe
different parts of the system~solvent, solute, or different sub
segments of the former! are of the same magnitude. No
surprisingly, the bottleneck transition feature shows up
many phase diagrams. There are, of course, some subtle
ferences between the phase diagrams in this region, w
require separate attention. Such a study is under way and
results will be presented elsewhere.
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APPENDIX

The general methodology adopted here is similar to t
developed in@7# and we will when possible benefit from
results derived there@7#. We consider a solution of stiff chain
discotics in a state of perfect or nearly perfect order,
which we understand that the allowed disorder of the disc
ics is such thatx/ ȳ.x. Furthermore, we assume that th
chains are not longer than the core edgem,x; thus the
chains’ presence causes only some perturbation to the p
equilibria behavior of sole hard-core disks in solution.

Let the corner cells of the hard core the chains are
tached to be labeled from 1 to 4, as shown in Fig. 12.
disordered discotic core on the lattice is segmented into c
nected trains of segments~cf. Fig. 4 in @7#!. It follows from
inspection of Fig. 2 that the side chains are at most attac
to three such trains. The blocking ability of the remaini
trains is the same as in the case of bare disks and the rele
occupation factors developed in@7# will be applicable also in
the present case@cf. Eqs. ~17!–~20! in @7##. Thus our task
reduces only to an estimate of the additional hinderanc
placing cells arising from trains with side chains.

We consider the blocking ability of trains from alread
dissolvedj discotic molecules. In the spirit of@7#, it is as-
sumed that the disorder index of all these molecules ha
ensemble average valueyX1yY52ȳ. Thus each of these
molecules is segmented into either type-I or type-II trai
depending on the particular orientation of a given molec
~cf. Fig. 4 in@7#!. Due to the system symmetry, both types
trains should be equally probable. As we argued in@7#, the
final result for a given occupation factor is the arithme
mean of results for both types of trains. Since the sys
should be in equilibrium, we assume that the disorder in
of j 11 molecule is also close to the system mean valueȳ.
Without limiting the generality of considerations, we assu
that the consideredj 11 discotic is represented on the lattic

FIG. 12. Implemented labeling of hard-core corners for cal
lating contributions toZcomb from the side chains.
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by the type-I trains~cf. @7#!. Each particular site is discusse
in the following.

1. Factor K1a

A site for the 1a cell can be occupied by any cell of th
chains, consistent with the result for soft side chains@cf. Eq.
~13!#.

2. Factor K2a
or

A site for the 2a cell can already be occupied by train
with the side chains in several different ways and the num
of ways side chains can do this is summarized in Table

It follows from Table II that the sole difference betwee
type-I and type-II blocking trains is in the blocking ability o
chains attached at position 4, i.e., sincem<x and x/ ȳ'x,
for the type-II trains access of the chains to the 2a site is
blocked by the segment they are attached to.

Combining the results in Table II and contributions fro
the 2ȳ2123 chainless trains, one gets the occupational f
tor of the 2a site by type-I blocking trains,

N2a
I 5~2ȳ22!~2x/ ȳ21!14m215~2ȳ21!~2x/ ȳ21!

14m22x/ ȳ, ~A1!

and by type-II trains,

N2a
II 5~ ȳ221!~2x/ ȳ21!14m215~ ȳ2!~2x/ ȳ21!14m

22x/ ȳ. ~A2!

The arithmetic average of results in Eqs.~A1! and ~A2!
yields

FIG. 13. Blocking ability of the terminal segment of a train wi
two stiff side chains of lengthm attached at position 1. The block
ing train of type II is to the right, the placed train is to the left. So
rectangles denote segments already positioned in the slice.l denotes
the position of a chain cell with respect to corner 4.x/yX andx/yY

define the size of the blocking big rectangle; cf. the text.

-

TABLE II. Number of ways trains with side chains can block a site for the 2a cell.

Side chains attached at position~cf. Fig. 12! Type of
1 2 3 4 blocking train

2x/ ȳ1m22 2m11 2x/ ȳ1m22 2m11 I

2x/ ȳ1m22 2m11 2x/ ȳ1m22 0 II



PRE 59 547ROLE OF SIDE CHAINS IN PHASE EQUILIBRIA OF . . .
TABLE III. Number of ways type-II trains with side chains can block the 1b site.

m2 l ,0 m2 l>0
Chains Small Big Small Big

1 x/ ȳ1m m11 m1(x/ ȳ2 l )
2 x/ ȳ1m (m2 l )1x/ ȳ
3 x/ ȳ1m 0 x/ ȳ1m m2 l

4 x/ ȳ1m x/ ȳ1m
N xȳ14m (2ȳ21)x/ ȳ13m xȳ2x/ ȳ14m2 l 11 (2ȳ21)x/ ȳ14m23l
ly
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bu-
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K2a
or ~x,ȳ,z,m!5

1

2
~N2a

I 1N2a
II !5

1

2
~2x/ ȳ21!~ ȳ212ȳ21!

14m22x/ ȳ. ~A3!

3. Factor K1b
or

The side row 1b and 1b8 cells are placed interchangeab
~cf. @7#! Let us now consider a site within a distancel from
the segment’s 1a corner. For type-II blocking trains we nee
to consider four separate cases due to different relations
tweenl and the chain length (m2 l ,0 or m2 l>0) and the
segment size (x/yY. l or x/yY, l ) see~Fig. 13!. Note that
under the assumptionyX1yY52ȳ, if x/yY. l thenx/yX, l
and the vice versa. The segments withx/yY. l are further
referred to as ‘‘big,’’ and those withx/yY, l as ‘‘small.’’ An
example of a big blocking segment is shown in Fig. 1
Occupancies for chains attached at different positions and
occupation factorsN arising from type-II blocking trains
~chainless included! for the each case are summarized
Table III.

Note that form2 l ,0 occupancies arel independent, as
one should expect. We average occupancies form2 l>0 and
l from 0 to m by setting l 5m/2. Next, we arithmetically
average over the rectangle size, i.e., we take the averag
theN in small and big columns in Table III. Form2 l ,0 we
get from Table III

Nm, l5@1/2ȳ211/2~2ȳ21!#x/ ȳ13.5m ~A4!

and form2 l>0

Nm> l5@1/2ȳ211/2~2ȳ21!#x/ ȳ13m21/2~x/ ȳ21!.
~A5!

Since results in Eqs.~A4! and ~A5! do not differ signifi-
cantly, we expect that the occupation factor for 1b sitesK1b

or

should be approximated with a satisfactory accuracy by
arithmetic mean of the two:

N1b
II 5

1

2
~Nm, l1Nm> l !51/2~ ȳ212ȳ21!~x/ ȳ!13.25m

20.25x/ ȳ10.25. ~A6!

In the case of type-I blocking trains, corrections intr
duced by the presence of chains are similar to those
type-II trains, except for chains attached at corner 3~cf.
Table IV!. Again, contributions from the remaining chainle
e-

.
he

of

e

of

segments are appropriately taken care of in the respectivN
factors.

Occupancies are averaged first form2 l>0 overl from 0
to m by again settingl 5m/2 and next we arithmetically
average over the rectangle sizes. Form2 l ,0 we obtain

Nm, l5xȳ13.5m ~A7!

and form> l

Nm> l5xȳ20.5x/ ȳ13m10.5 ~A8!

~cf. Table IV!. Thus, the final contribution to the occupatio
factor from the ‘‘average’’ molecule built of type-I trains i

N1b
I 5

1

2
~Nm, l

I 1Nm> l
I !5xȳ20.25x/ ȳ10.2513.25m

~A9!

and using Eq.~A6! one finally gets

K1b9 ~x,ȳ,8,m!5
1

2
~N1b

I 1N1b
II !5@3ȳ2/41~2ȳ21!/4#x/ ȳ

13.25m20.25x/ ȳ10.25 ~A10!

4. Factor K2b
or

Since for type-II trains the blocking ability of their sub
sequent segments is independent of the presence of the
ceding segments in the train being placed, the contribu
from type-II trains to the occupancy of the 2b site will be the
same as for the 1b sites@cf. the case of bare disks, Eq.~A15!
in @7##. Thus, we need to estimate in this case the contri
tions from type-I trains only.

TABLE IV. Number of ways type-I trains with side chains ca
block the 1b site.

m2 l ,0 m2 l>0
Chains Small Big Small Big

1 x/ ȳ1m m11 m1(x/ ȳ2 l )
2 x/ ȳ1m (m2 l )1x/ ȳ
3 x/ ȳ1m x/ ȳ x/ ȳ1m x/ ȳ1m2 l
4 x/ ȳ1m x/ ȳ1m
N xȳ14m xȳ13m xȳ2x/ ȳ14m2 l 11 xȳ14m23l
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The presence in theXY slice of the just placed precedin
segment creates severe restrictions on the blocking abilit
the type-I train, i.e., access to any considered site for theb
cell by cells of any other segment but the first one in
blocking train is forbidden. In particular, there will not b
any contribution from chains attached to corner 4 since
belongs to the last segment in the train. The number of w
type-I trains can block a given site for the the 2b cell w
again depend on the relative magnitude ofl with respect to
m and on the size of the blocking segment~either big or
small!. Following the procedure of Sec. III, we get resu
summarized in Table V.

Repeating the same procedure as in the previous sub
tions, i.e., by adding up relevant contributions and averag
over the segment size and overl , l ,m, we get

N2b
I 5~ ȳ21!x/ ȳ20.75x/ ȳ11.75m10.25. ~A11!

Since N1b
II [N1b

I , with the aid of Eq.~A6! the occupation
factor becomes

K2b
or ~x,ȳ,8,m!5

1

2
~N2b

I 1N1b
II !5@ ȳ2/413~2ȳ21!/4#x/ ȳ

20.5x/ ȳ12.5m10.25. ~A12!

5. Factor K1c
or

Blocking of sites destined formc cells, m51 or 2,
strongly depends on how the considered cell position in
segment compares with the obstructing chain length.
sites for more ‘‘outer’’mc cells can be blocked even by ver
short chains, whereas the inner ones can only be blocke
the longer. We note also that chains attached at corner
any of the potentially obstructing trains do not participate
the blocking. One thus needs to consider only chains
tached to the remaining three corners. Furthermore, co
butions from the chains are the same regardless of the
type, i.e., I or II, the chains are attached to. The mean oc
pation factor formc cells K1c

or can be written generally as

K1c
or~x,ȳ,z,m!5 1

2 @~ ȳ223!12ȳ24#1h, h5(
i 51

3

p~ i ! ,

~A13!

where the blocking contributionsp( i ) from chains attached to
the ith corner areexplicitly separated. As trial calculation
show, the phase diagram turns out to be very sensitive to
value theh parameter takes on. Nevertheless, in order
simplify the final formulas and to facilitate drawing som

TABLE V. Number of ways type-I trains with side chains ca
block the 2b site.

Side chains attached at position~cf. Fig. 12!
1 2 3 4

Case Small Big Both Small Big Both

m2 l ,0 x/ ȳ1m x/ ȳ1m x/ ȳ1m x/ ȳ 0

m2 l>0 x/ ȳ2 l 1 m2 l x/ ȳ1m x/ ȳ1m2 l 0
of

e

it
ys

ec-
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e
e

by
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ri-
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conclusions from numerical results of the present work,
decided to find some reasonable approximate mean valu
the parameter, which would allow the main features of
system behavior on varyingm to be preserved. Note, fo
example, that the value ofh increases from 2, characterist
for the innermost cells, to 6 for the outermost cells. Since
number of equivalent cells~and thus the statistical weight!
increases with the distance from thema cell, one should
expect the average value ofh to be greater than the arith
metic mean of both extrema, i.e., 4. To get a more reali
approximation of the mean we consider the segment mid
cell, i.e., the one at a position@x/2ȳ,x/2ȳ# with respect toma
corner ~cf. Fig. 5!. Particular values ofp( i ) depend on
whetherm,x/2ȳ or m.x/2ȳ. For m,x/2ȳ we have

p~1!51, p~2!52, p~3!51 ~A14!

and form.x/2ȳ

p~1!52, p~2!52, p~3!52. ~A15!

The average ofh from Eqs.~A14! and ~A15! is 5. The
value enhances the contribution from very short chainx
@2>m in particular, but should work better for chains wit
m approachingx. Nevertheless, we decided to use it in o
illustrative calculations. This leads obviously to some unc
tainty in the phase diagram behavior onm approaching 0, as
illustrated in Fig. 14. Note that the phase diagram is ess
tially insensitive toh in the bottleneck part of the biphasi
range. The main effect ofh is then a shift of the broad part o
the phase diagram towards lower temperatures on increa
h from 5 to 6. The effect becomes quickly less pronounc
on increasingm, thus the approximation gives more realist
results for longer chains. Of course, if the need arises
value ofh for any particular fixed chain length can be pr
cisely estimated and used in Eq.~A13!. Substitution of the
mean valueh55 into Eq.~A13! gives

K1c
or~x,ȳ,z,m!5 1

2 @~ ȳ223!12ȳ24#15. ~A16!

FIG. 14. Effect of theh correction factor appearing in Eq.~A13!
on the (vx ,Q) phase diagram forx510. The phase diagram for th
pure hard-core system ofx510 is also shown; cf. the text.
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